Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one

Jianzhang Wu,^{a,b} Li Zhang,^b Jing Wang,^b Shulin Yang^a and Xiaokun Li^{a,b}*

^aInstitute of Biotechnology, Nanjing University of Science and Technology, Nanjing, Jiangsu Province, 210094, People's Republic of China, and ^bSchool of Pharmacy, Wenzhou Medical College, Wenzhou, Zhejiang Province, 325035, People's Republic of China

Correspondence e-mail: proflxk@163.com

Received 29 September 2009; accepted 13 October 2009

Key indicators: single-crystal X-ray study; T = 273 K; mean σ (C–C) = 0.002 Å; R factor = 0.039; wR factor = 0.132; data-to-parameter ratio = 13.3.

In the title compound, $C_{18}H_{18}O_4$, a derivative of biologically active chalcones, the dihedral angle between the two rings is 7.43 (7)°. The molecule adopts an *E* configuration about the central olefinic bonds. In the crystal, there are no strong interactions between the molecules.

Related literature

For related structures, see: Subbiah Pandi *et al.* (2003); Low *et al.* (2002); Yathirajan *et al.* (2006); Suwunwong *et al.* (2009); Jasinski *et al.* (2009). For background to and applications of chalcones, see: Dimmock *et al.* (1999); Sivakumar *et al.* (2009); Echeverria *et al.* (2009); Kontogiorgis *et al.* (2008); Dominguez *et al.* (2005); Nowakowska (2007).

Experimental

Crystal data $C_{18}H_{18}O_4$ $M_r = 298.32$ Monoclinic, $P2_1/c$ a = 9.0052 (10) Å

b = 14.9245 (17) Å
c = 11.7658 (14) Å
$\beta = 104.315 \ (2)^{\circ}$
V = 1532.2 (3) Å ³

Z = 4
Mo $K\alpha$ radiation
$\mu = 0.09 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2001)	
$T_{\min} = 0.989, T_{\max} = 0.996$	

Refinement $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.132$ S = 1.002701 reflections organic compounds

 $0.12 \times 0.10 \times 0.05 \text{ mm}$

7895 measured reflections 2701 independent reflections 2125 reflections with $I > 2\sigma(I)$ $R_{int} = 0.044$

 $\begin{array}{l} 203 \text{ parameters} \\ \text{H-atom parameters constrained} \\ \Delta \rho_{max} = 0.15 \text{ e } \text{ Å}^{-3} \\ \Delta \rho_{min} = -0.16 \text{ e } \text{ Å}^{-3} \end{array}$

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported by Zhejiang Province Extremely Key Subject Building Funding (Pharmacology and Biochemical Pharmaceutics 2008), the Department of Education of Zhejiang Province (No. 20070907) and the Wenzhou Administration of Science and Technology project (No. Y20080016).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2350).

References

- Bruker (2001). SADABS and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem. 6, 1125–1150.
- Dominguez, J. N., Leon, C., Rodrigues, J., Gamboa de Dominguez, N., Gut, J. & Rosenthal, P. J. (2005). *Farmaco.* 60, 307–311.
- Echeverria, C., Santibanez, J. F., Donoso-Tauda, O., Escobar, C. A. & Ramirez-Tagle, R. (2009). *Int. J. Mol. Sci.* 10, 221–31.
- Jasinski, J. P., Butcher, R. J., Veena, K., Narayana, B. & Yathirajan, H. S. (2009). Acta Cryst. E65, o1965–o1966.
- Kontogiorgis, C., Mantzanidou, M. & Hadjipavlou-Litina, D. (2008). Mini Rev. Med. Chem. 8, 1224–1242.
- Low, J. N., Cobo, J., Nogueras, M., Sánchez, A., Albornoz, A. & Abonia, R. (2002). Acta Cryst. C58, 042–045.
- Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivakumar, P. M., Muthu Kumar, T. & Doble, M. (2009). Chem. Biol. Drug Des. 4, 68–79.
- Subbiah Pandi, A., Velmurugan, D., Shanmuga Sundara Raj, S., Fun, H.-K. & Bansal, M. C. (2003). Acta Cryst. C59, 0302–0304.
- Suwunwong, T., Chantrapromma, S., Pakdeevanich, P. & Fun, H.-K. (2009). Acta Cryst. E65, 01575–01576.
- Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, 03629–03630.

supplementary materials

Acta Cryst. (2009). E65, o2805 [doi:10.1107/S1600536809041877]

1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one

J. Z. Wu, L. Zhang, J. Wang, S. L. Yang and X. K. Li

Comment

Chalcones, which have the common skeleton of 1,3-diaryl-2-propen-1-ones, are natural products, distributed widely in fruits, vegetables etc. Natural and synthetical chalcones have wide-ranging biological properties, including antimicrobial, antifungal, antioxidant, antiangiogenic, antitumor and anti-inflammatory activities (Dimmock *et al.*, 1999; Sivakumar *et al.*, 2009; Echeverria *et al.*, 2009; Kontogiorgis *et al.*, 2008). The chalcone derivatives with trimethoxyphenyl substitution have also been reported to have a wide range of biological activities (Suwunwong *et al.*, 2009; Jasinski *et al.*, 2009; Dominguez *et al.*, 2005; Nowakowska, 2007).

The present investigation is a continuation of our broad program of work on the synthesis and structural study of chalcones and their derivatives. Investigation of these structures may be helpful in the design and synthesis of new compounds. In order to understand the geometrical features and the underlying intermolecular interactions which hold the assembly of molecules in the crystal structure, an X-ray study of the title compound was carried out.

It is approximately planar and the dihedral angle between the two rings is 7.43 (7)°. The H atoms of the central propenone group are *trans*. The average value of the bond distances [1.385 (5) Å] and exocyclic bond angles [120.7 (4)°] in the benzene and phenyl rings have normal values which agree quite well with the values reported in the literature for some analogous structures (Subbiah Pandi *et al.*, 2003; Low *et al.*, 2002; Yathirajan *et al.*, 2006).

Experimental

Acetophenone (15 mmol) was dissolved in ethanol (5 ml) and crushed KOH (15 mmol) was added. The flask was immersed in a bath of crushed ice and a solution of 2,4,6-trimethoxybenzaldehyde (15 mmol) in ethanol (5 mmol) was added. The reaction mixture was stirred at 300 K and completion of the reaction was monitored by thin-layer chromatography. Ice-cold water was added to the reaction mixture after 48 h and the yellow solid that separated was filtered off, washed with water and cold ethanol, dried and purified by column chromatography on silica gel (yield:68%). Single crystals of the title compound were grown in a CH_2Cl_2/CH_3OH mixture (5:2 v/v) by slow evaporation (mp 436–437 K).

Refinement

The H atoms were positioned geometrically (C—H = 0.93 and 0.96 Å) and refined as riding with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The molecular structure of the title compound, showing 30% displacement ellipsoids for the non-hydrogen atoms. Hydrogen atoms are drawn as spheres of arbitrary radius.

1-Phenyl-3-(2,4,6-trimethoxyphenyl)prop-2-en-1-one

Crystal d	lata
-----------	------

$C_{18}H_{18}O_4$	$F_{000} = 632$
$M_r = 298.32$	$D_{\rm x} = 1.293 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 3499 reflections
a = 9.0052 (10) Å	$\theta = 2.7 - 27.9^{\circ}$
<i>b</i> = 14.9245 (17) Å	$\mu = 0.09 \text{ mm}^{-1}$
c = 11.7658 (14) Å	T = 273 K
$\beta = 104.315 \ (2)^{\circ}$	Block, colorless
V = 1532.2 (3) Å ³	$0.12\times0.10\times0.05~mm$
Z = 4	

Data collection

Bruker APEXII CCD area-detector diffractometer	2701 independent reflections
Radiation source: fine-focus sealed tube	2125 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.044$
T = 273 K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.3^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.989, T_{\max} = 0.996$	$k = -17 \rightarrow 15$
7895 measured reflections	$l = -13 \rightarrow 13$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.039$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0938P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.132$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.00	$\Delta \rho_{max} = 0.15 \text{ e} \text{ Å}^{-3}$
2701 reflections	$\Delta \rho_{min} = -0.16 \text{ e} \text{ Å}^{-3}$

203 parameters	Extinction correction: SHELXL, $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Primary atom site location: structure-invariant direct methods	Extinction coefficient: 0.353 (18)
Secondary atom site location: difference Fourier map	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.9745 (2)	-0.05689 (12)	0.14050 (16)	0.0745 (5)
H1A	1.0183	-0.0376	0.2196	0.112*
H1B	1.0548	-0.0662	0.1012	0.112*
H1C	0.9196	-0.1119	0.1415	0.112*
C2	0.65289 (18)	-0.07567 (10)	0.42207 (13)	0.0599 (4)
H2A	0.6579	-0.1285	0.3765	0.090*
H2B	0.6153	-0.0913	0.4890	0.090*
H2C	0.7534	-0.0500	0.4479	0.090*
C3	0.44257 (19)	0.21153 (10)	-0.08152 (13)	0.0619 (4)
H3A	0.5373	0.2441	-0.0605	0.093*
H3B	0.3608	0.2517	-0.1166	0.093*
H3C	0.4499	0.1652	-0.1364	0.093*
C4	0.74716 (15)	0.02951 (9)	0.11985 (12)	0.0466 (4)
C5	0.72022 (14)	-0.00525 (9)	0.22193 (11)	0.0462 (4)
H5	0.7898	-0.0443	0.2687	0.055*
C6	0.58735 (14)	0.01944 (9)	0.25291 (11)	0.0424 (4)
C7	0.47895 (14)	0.07868 (8)	0.18520 (11)	0.0407 (4)
C8	0.51526 (15)	0.11331 (9)	0.08332 (11)	0.0437 (4)
C9	0.64562 (16)	0.08890 (9)	0.05100 (12)	0.0483 (4)
H9	0.6658	0.1122	-0.0170	0.058*
C10	0.34214 (15)	0.10052 (9)	0.22290 (12)	0.0456 (4)
H10	0.3369	0.0743	0.2935	0.055*
C11	0.22244 (15)	0.15177 (10)	0.17373 (12)	0.0509 (4)
H11	0.2175	0.1775	0.1009	0.061*
C12	0.09861 (15)	0.16858 (10)	0.23113 (12)	0.0512 (4)
C13	-0.02269 (14)	0.23528 (9)	0.17775 (12)	0.0469 (4)
C14	-0.01819 (17)	0.28712 (10)	0.08031 (13)	0.0557 (4)
H14	0.0600	0.2784	0.0426	0.067*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

C15	-0.12880 (19)	0.35148 (11)	0.03909 (15)	0.0658 (5)
H15	-0.1239	0.3863	-0.0255	0.079*
C16	-0.24600 (18)	0.36410 (12)	0.09338 (15)	0.0665 (5)
H16	-0.3197	0.4079	0.0661	0.080*
C17	-0.25405 (17)	0.31221 (12)	0.18758 (15)	0.0650 (5)
H17	-0.3346	0.3200	0.2232	0.078*
C18	-0.14374 (16)	0.24862 (11)	0.22991 (13)	0.0568 (4)
H18	-0.1501	0.2141	0.2943	0.068*
01	0.09525 (13)	0.13297 (9)	0.32420 (10)	0.0788 (4)
02	0.41260 (11)	0.17261 (7)	0.02032 (8)	0.0580 (3)
O3	0.87208 (11)	0.01000 (7)	0.08015 (9)	0.0645 (4)
O4	0.55259 (11)	-0.01253 (7)	0.35229 (9)	0.0568 (3)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0661 (10)	0.0857 (12)	0.0833 (11)	0.0327 (9)	0.0404 (9)	0.0290 (10)
C2	0.0601 (9)	0.0681 (10)	0.0523 (9)	0.0107 (8)	0.0156 (7)	0.0195 (7)
C3	0.0716 (10)	0.0603 (10)	0.0518 (9)	0.0047 (8)	0.0115 (8)	0.0158 (7)
C4	0.0438 (7)	0.0485 (8)	0.0512 (8)	0.0025 (6)	0.0186 (6)	0.0020 (6)
C5	0.0450 (8)	0.0464 (8)	0.0483 (8)	0.0063 (6)	0.0137 (6)	0.0071 (6)
C6	0.0441 (7)	0.0449 (7)	0.0390 (7)	-0.0012 (6)	0.0119 (6)	0.0025 (6)
C7	0.0407 (7)	0.0426 (7)	0.0384 (7)	0.0006 (5)	0.0088 (5)	-0.0029 (5)
C8	0.0455 (8)	0.0414 (7)	0.0421 (7)	0.0021 (6)	0.0067 (6)	0.0006 (6)
C9	0.0540 (8)	0.0510 (8)	0.0423 (8)	0.0014 (6)	0.0164 (6)	0.0065 (6)
C10	0.0455 (8)	0.0499 (8)	0.0409 (7)	0.0007 (6)	0.0097 (6)	-0.0048 (6)
C11	0.0463 (8)	0.0626 (9)	0.0430 (8)	0.0072 (6)	0.0097 (6)	-0.0019 (6)
C12	0.0445 (8)	0.0646 (9)	0.0433 (8)	0.0024 (7)	0.0086 (6)	-0.0059 (7)
C13	0.0392 (7)	0.0536 (8)	0.0460 (8)	-0.0003 (6)	0.0071 (6)	-0.0107 (6)
C14	0.0504 (8)	0.0632 (9)	0.0559 (9)	0.0055 (7)	0.0174 (7)	-0.0042 (7)
C15	0.0666 (10)	0.0660 (10)	0.0647 (10)	0.0118 (8)	0.0159 (8)	0.0051 (8)
C16	0.0532 (9)	0.0684 (11)	0.0751 (11)	0.0148 (8)	0.0107 (8)	-0.0029 (9)
C17	0.0444 (8)	0.0741 (11)	0.0801 (12)	0.0072 (7)	0.0221 (8)	-0.0086 (9)
C18	0.0496 (8)	0.0657 (9)	0.0580 (9)	-0.0010(7)	0.0188 (7)	-0.0053 (7)
01	0.0688 (8)	0.1132 (10)	0.0602 (7)	0.0294 (7)	0.0272 (6)	0.0240 (7)
O2	0.0577 (6)	0.0647 (7)	0.0522 (6)	0.0165 (5)	0.0150 (5)	0.0177 (5)
O3	0.0587 (7)	0.0769 (8)	0.0675 (7)	0.0206 (5)	0.0340 (6)	0.0224 (5)
O4	0.0533 (6)	0.0719 (7)	0.0500 (6)	0.0154 (5)	0.0216 (5)	0.0200 (5)

Geometric parameters (Å, °)

C1—O3	1.4241 (17)	C8—O2	1.3596 (15)
C1—H1A	0.9600	C8—C9	1.3697 (19)
C1—H1B	0.9600	С9—Н9	0.9300
C1—H1C	0.9600	C10-C11	1.3317 (19)
C2—O4	1.4182 (16)	C10—H10	0.9300
C2—H2A	0.9600	C11—C12	1.4611 (19)
C2—H2B	0.9600	C11—H11	0.9300
C2—H2C	0.9600	C12—O1	1.2244 (17)

C3—O2	1.4163 (17)	C12—C13	1.496 (2)
С3—НЗА	0.9600	C13—C18	1.391 (2)
С3—Н3В	0.9600	C13—C14	1.392 (2)
С3—Н3С	0.9600	C14—C15	1.382 (2)
C4—O3	1.3521 (16)	C14—H14	0.9300
C4—C9	1.3827 (19)	C15—C16	1.375 (2)
C4—C5	1.3836 (19)	C15—H15	0.9300
C5—C6	1.3842 (17)	C16—C17	1.369 (2)
С5—Н5	0.9300	С16—Н16	0.9300
C6—O4	1.3688 (15)	C17—C18	1.375 (2)
C6—C7	1.4088 (18)	С17—Н17	0.9300
С7—С8	1.4158 (18)	C18—H18	0.9300
C7—C10	1.4461 (18)		
O3—C1—H1A	109.5	C8—C9—C4	119 73 (12)
03—C1—H1B	109.5	С8—С9—Н9	120.1
HIA—CI—HIB	109.5	C4—C9—H9	120.1
O3-C1-H1C	109.5	C11-C10-C7	130.97 (13)
HIA—CI—HIC	109.5	C11-C10-H10	114.5
H1B—C1—H1C	109.5	C7—C10—H10	114.5
04—C2—H2A	109.5	C10-C11-C12	121 74 (13)
O4—C2—H2B	109.5	C10-C11-H11	119.1
H2A—C2—H2B	109.5	C12—C11—H11	119.1
O4—C2—H2C	109.5	O1—C12—C11	121.96 (13)
H2A—C2—H2C	109.5	O1—C12—C13	119.16 (13)
H2B—C2—H2C	109.5	C11—C12—C13	118.79 (13)
О2—С3—НЗА	109.5	C18—C13—C14	117.99 (13)
O2—C3—H3B	109.5	C18—C13—C12	118.71 (13)
НЗА—СЗ—НЗВ	109.5	C14—C13—C12	123.26 (12)
О2—С3—Н3С	109.5	C15—C14—C13	120.66 (14)
НЗА—СЗ—НЗС	109.5	C15—C14—H14	119.7
НЗВ—СЗ—НЗС	109.5	C13—C14—H14	119.7
O3—C4—C9	114.95 (12)	C14—C15—C16	120.09 (16)
O3—C4—C5	123.95 (12)	C14—C15—H15	120.0
C9—C4—C5	121.09 (12)	C16—C15—H15	120.0
C6—C5—C4	118.50 (12)	C15—C16—C17	119.95 (15)
С6—С5—Н5	120.7	С15—С16—Н16	120.0
C4—C5—H5	120.7	С17—С16—Н16	120.0
O4—C6—C5	121.82 (11)	C16—C17—C18	120.38 (14)
O4—C6—C7	115.41 (11)	С16—С17—Н17	119.8
C5—C6—C7	122.77 (11)	С18—С17—Н17	119.8
C6—C7—C8	115.79 (11)	C13—C18—C17	120.91 (15)
C6—C7—C10	119.45 (11)	C13—C18—H18	119.6
C8—C7—C10	124.75 (12)	C17—C18—H18	119.5
O2—C8—C9	122.39 (12)	C8—O2—C3	118.82 (11)
O2—C8—C7	115.53 (11)	C4—O3—C1	118.07 (11)
C9—C8—C7	122.08 (12)	C6—O4—C2	118.61 (10)

Fig. 1

